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In this paper, we show that in the case of the potential made up of a repulsive and an attractive part the virial
equation of state can be put into a form similar to the van der Waals equation of state and thus the form of the
van der Waals equation of state is generic to such a class of potentials. The derivation provides exact statistical
mechanical representations for the van der Waals parameters. The generic van der Waals parameters are
evaluated as functions of density and temperature by using the Percus-Yevick integral equation for the pair
correlation function in the case of a square-well potential. They become disjointed functions of density, which
are not defined in a density interval in the subcritical regime, if the temperature is less than the critical
temperature. On the basis of the numerical solution results for the parameters we conjecture that they are
irrational functions of density and thus nonanalytic.
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[. INTRODUCTION In this work we would like to show that the form of the

van der Waals equation of state is generic to all interaction

The van der Waals equation of state has been serving ngotential models that have a hard core and a finite ranged
only as a practical model for description of liquids and gasegttractive potential, or, more generally, a repulsive core and
but also as a prototype of, and a guide for, the equations i attractive branch of interaction, provided that the density
state subsequently proposed in the literatire 3|, which does not approach that of close packing. It is a canonical
were attempts made to improve it from the phenomenologiform for fluids obgying such a potential modgl. Therefore the
cal standpoints. Besides such older versions of equation ¢Prm of the equation of state presented in this work in effect
state that appear in the literature, in some relatively recerfMounts to a derivation of an exact van der Waals-type equa-
versions proposition§4,5] have been made to modify the tion of state. Thls viewpoint en_ables us to obtain exact sta-
excluded volume term in the van der Waals equation of statfiStical mechanical representations of the van der Waals pa-

so as to make it perform better at high densities. Howevergp:;]egtsersor'anrgotrﬁerggec';sg’sti g:tgert'ﬁe Vrigandir?rsvx;‘aatlr?e
such modifications are made intuitively without a firm statis- ' y 9 9

. . ) . : riginal van der Waals parameters in a more precise manner
tical mechanical basis except that the resulting equations g P P

tat ‘ better than th iinal . : q nd also to explore modifications of the original van der
state periorm better than the orginal version of van dehy 545 equation of state to forms more suitable for study of

Waals in some respects. If the thermodynamic perturbatiog,s thermodynamic properties of fluids. To make the inves-
theories were pursued to all orders, one might in principlgjgation as simple as possible and also to be more specific in
obtain some relations of the van der Waals parameters to thgyestigation, we assume a square-well interaction potential
perturbation series for the distribution function. However,ang the Percus-Yevick closufé] for the Ornstein-Zernike
the resulting relations should be expected to be rather com©z) equation for the pair correlation function. The Percus-
plicated and physically nonintuitive. In the absence of firmyevick closure, however, is not mandatory because any
statistical mechanical foundations ad hocattempt at im-  other closure can be used. The integral equation for the pair
provement of a very intuitive theory, such as the van defcorrelation function in the subcritical region of density and
Waals theory, is bound to produce a result not sufficientltemperature provides not only integral equation representa-
robust. One may therefore ask if there are reasonably simplgons for the van der Waals-type parameters, but also a way
representations of the van der Waals parameters, which ate obtain an equation of state free from the van der Waals
rigorously based on statistical mechanics, and, concurrentlypop. The generic van der Waals parameters defined are not
if it is possible to remove the principal defect of the van deranalytic in the subcritical regime and may be represented by
Waals equation of state, that is, to remove the appearance wfational functions of density and temperature. By assuming
the loop in the equation of state. Answering these questionsuitable irrationalnonanalyti¢ functions for the generalized
would in effect amount to modifying the van der Waals van der Waals parameters in the subcritical regime, one can
equation of state to a form similar in mathematical structurein fact show that the equation of state can yield nonclassical
but without the defect of the former. critical exponents for some relations of the thermodynamic
variables near the critical point. We will report on this line of
study elsewherg7] in the near future.

*Also at the Centre for the Physics of Materials and Department In Sec. Il we present the derivation of a generic form of
of Physics, McGill University, and the Asia Pacific Center for the equation of state for a potential model that has a hard
Theoretical Physics, Seoul, Korea. Electronic addresscore and a finite ranged attractive potential. This derivation
eu@chemistry.mcgill.ca is rather simple if the virial form of the equation of state is
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used. It enables us to obtain the statistical mechanical repraeimply repulsive forr <o; these relaxed conditions would
sentations of the generic van der Waals parameters. Therot invalidate the conclusion on the generic form for the
these representations are specialized to the case of a squasguation of state presented below. For the potential model
well potential. In Sec. Ill we numerically calculate the ge- presented earlier the virial equation of state takes the form
neric van der Waals parameters as functions of density and
temperature by using the Ornstein-Zernike equation with the p 2mod
Percus-Yevick closure in the case of a square well model for —=1+ py(o,p,B)

. . p 3
the potential energy. The generic van der Waals parameters
are found to be continuous functions of density over the 20 £ d
entire density range as they should be, if the temperature is +—=p f dr f3Y(F,P,,3)af(f), €)
supercritical, but in the subcritical regime of temperature 7
they are not defined in a domain of density and thus become ) ) ]
disjointed, piecewise continuous functions of density. Thisvheref(r) is the Mayer function defined far(r) by
disjointedness reflects the fact that the liquid and vapor
phases are in equilibrium with each other, and the integral f(r)=exd —Bu(r)]—1. (4
equation for the pair distribution function consequently does
not have solutions in the range of density bounded by a Define the following functions of density and tempera-
temperature-density curve reminiscent of the liquid-vaporyre:
coexistence curve. The discontinuity of the generic van der

Waals parameters implies that they are nonanalytic functions 2 (€ d

of density and temperature in the subcritical regime. In Sec. A(p,B)=— —f drr3y(r,p,B) —f(r), (5)
IV the generic van der Waals equation of state is organized 3B Jo dr

to a form which we believe is more suitable for studying the

thermodynamics of fluids in the subcritical regime so that we 2703 y(a,p,B)

can avail ourselves to the basic methodology of the van der B(p,B)= 3 oy . (6)
Waals theory for the subcritical behavior of fluids. The result 14577 py(a,p,B)

of this line of study, which is not presented in this work, 3

suggests that the generic van der Waals equation of state can

be potentially useful for studying the thermodynamics of Then the virial equation of state in E) can be written in
subcritical fluids and study of critical phenomena becomeshe form

tantamount to studying the nonanalyticity of the generic van

der Waals parameters. In Sec. V the concluding remarks are (p+Ap?)(1-Bp)=pB~ L, 7)
given.

which has formally the same form as the van der Waals
Il. EQUATIONS FOR PRESSURE equation of state. This will be referred to the generic van
der Waals equation of statand the coefficientéd andB the
) _ - ) generic van der Waals parametersthis work. This simple
For a pair potential energu(r) the virial equation of  gerivation, or rather a recasting of the virial equation of state,

A. Generic van der Waals equation of state

state is given by8,9] implies that the van der Waals equation of state is a canoni-
P 5 . cal and generic form of equation of state for the class of
_pzl_ _W,Bpf drr3u’(r)exd — Bu(r)1y(r.p.B), potential models assumed, and E@®.and(6) are the exact
P 3 0 statistical mechanical representations for the generic van der

(1)  Waals parameter& andB in the canonical form of equation
, ) ] of state. As will be shown later, the generic form in Ed)
where u’(r)=du(r)/dr,8=1/kgT with kg denoting the reqyces to the original van der Waals equation of state as a
Boltzmann constant, angl(r,p,B) is the cavity function.  gpecial case holding in the limit gf—0, wherey(o,p, 8)
The density and temperature dependence will be suppressed o if the potential model is such that it yieldsand B
in the cavity function for brevity of notation, whenever con- \yhich are independent of density and temperature. The latter
venient. Let us assume that the potential energy has the forgbse, however, would take a rather special kind of the poten-
tial energy function. We will examine Eq7) together with
Egs. (5) and (6) in this paper. It must be noted that the
—uy(r) for o<r<¢ parametetB is closely related to the hard core, and the pa-
rameterA to the attractive branch of the potential.

u(ry=oc for r<o

=0 for &<r. (2

Hereu,(r)<0. Therefore the potential has a hard core and a B. Square-well potential model
finite ranged force of attraction. These conditions can be We assume a square-well potential model for the interac-
made less restrictive by removing the condition of finitetion potential energy for the simplicity it provides without
range of the attractive potential and making the potentialoss of the essential physical contents of the idea:
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u(r)=o for r<o (p* +A* %) (1-B* )= nB* 1, (12)
=—e for o<r<¢ where with the definitions
=0 for r>¢. 8
‘ © A* = A B* = 5 13
Here e is the well depth of the potential. For this potential evg’ vy (13

the Mayer function takes the form

the reduced generic van der Waals parameters are given by
f(ry=—1 for r<o the formulas

=expBe)—1 for o<r<¢ A*(,B*,n)=4,8*_1(exp,8*—1)[73y(7.,6’*,77)

=0 for r>¢.

_y(Lﬁ*vnnv (1®
The interaction range parameteand the well deptlz may
be fixed such that the second virial coefficients computed B* (%, )= 4y(1,8*,7) (15
with the van der Waals interaction-¢ ~° potential) and the (B m= 1+47y(1,8%,7)

square-well potential, respectively, match with each other so

that{ ande are not independent parameters. The virial equayyith A and B reduced to these forms, the generic van der

tion of state for the square-well potential is easily shown toyaals equation of state evidently does not explicitly depend

be given by the expression on material parameters such asand . Therefore it is a
corresponding-state equation of state, although not in the

Bp 2mo” 2mo” sense of that of the van der Waals theory, which yields a
—=1+ py(o,p,B)— plexp(Be)—1] . . . :
3 3 corresponding-state equation of state on scaling the equation
3 of state with the critical parameterp{,v.,T) defined by it.
X é y(&p,B)—Y(a,p,B)|. (9) To prepare for the compar_ison to b_e_made of the equation
o of state presented in E¢L2) with the original van der Waals

. . ) . i equation of state, we present the latter in terms of the re-
This equation of state may be put into the form given in EQ.qyced variables introduced:

(7) for which the parameter& andB are now given by the

formulas (p* +a* 772)(1_ b* 77): 77,8* 71. (16)
2 ’
Alp,B)=— — B Yexp Be)— 1] y(o,p, ) Here the van der Waals parametafsandb’ are reduced as
3 follows:
(&) venm (10 a b’
) Yi&PP] a*=—, b*=—. (17)
€V Uo
B(p. )= 270 y(o,p,B) (11) It should be noted tha’ andb’ are constants independent
pB="3 2o ' of temperature and density.

g
1+ 3 py(a,p,B)

A. The cavity functions and the generic van der Waals
For the case of a square-well potential the form of parameter parameters
B remains unchanged from the case of the potential model

(2).

On close examination of the equation of stéit8) for the
square-well potential, we see that the cavity function
y(1,7,B8%) is intimately related to the hard core of the po-

lll. DENSITY AND TEMPERATURE DEPENDENCE tential whereas the cavity functior(y, »,8*) must be more

OF AAND B closely related to the attractive part of the potential thh)

To study the density and temperature dependence of tH§: @S can be verified by a perturkiatiqn theory. The limiting
generic van der Waals parameters it is convenient to usehavior of the parametess” andB* with regard to density
reduced variables defined as follows: can be readily deduced by observing that the cavity functions

y(1,7,8*) andy(y,n,8*) tend to unity asp—0. In this
limit the reduced parameters therefore tend to constants

ar
N *’ *:T*—1: , * — /e, =¢f
=l P Por BmPuole YR AR (B = 4B* HexpB* — 1)( - 1)~4(y- 1),

nﬁo
together withv,=m7c%/6 and p* =c3p. The equation of
state for the square-well potential then may be put into the lim B*(B8*,7)=4. (18)
reduced form 7—0
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Note that the zero density limit &&* generally depends on 25
temperature. With this set of constant parameters the generic

van der Waals equation of state becomes the original van der  2or
Waals equation of state, if we identify

a'=4gvo(y*—1), b'=v,

for the square-well potential model. These parameters arex
independent of density and temperature. From the viewpoint
of the present approach the van der Waals equation of state
therefore is the zero density limit for the cavity functions and
thus for B* and A* for which g* ~Y(expB* —1)=1. This
consideration suggests that the van der Waals equation of
state will not arise as an exact statistical mechanical result,
unless special models are taken for the potential as in the
case of the studies made by Kac and ot{é11]. In the 1% 02 04 06 08
sense of the limits given in E¢18) the equation of stat€l2) p*
is a generalized form of the original van der Waals equation
of state, and it is justifiable to call it the generic van der
Waals equation of state because of the similarity of the form? Sl e

or T*=1.1; and the broken curve is for* =1.0. The last two

of Bgs.(12) and(16) and the generality of the former. The curves are subcritical and undefined in an interval enclosing the

" . - o .
!'mltm.g behawpr OfA . andB” in Eq. (18) motivates us to ritical point and thus disjointed. The symbol represents the critical
investigate their density and temperature dependence and dé-

o : int.
velop modified forms of the van der Waals equation of state: on
For this purpose we must investigate the integral equation f
the cavity function.

FIG. 1. Density dependence 8f . The dotted curve is fof*
=1.25; the solid curve is fof* = 1.218; the dashed—dotted curve is

0{'his statistical mechanical representation of free volume
makes the free volume concept precisely quantified and com-
putable by means of the pair correlation function of the fluid
instead of using models for it as is usually the case in the
The density dependence @f* and B* discussed later literature[13—-15.
indicates that in the high density regind becomes nega-
tive beyond a density valuey;, say, andB* tends to a
constant independent of density. In the density regime of

> g, it then is reasonable to write the equation of state in the The cavity functions appearing in the expressions for the
form parameters\* andB* are computed from the solutions for

the integral equation for the total correlation function by as-
p*(1-Bsy)=nB* 1, (19 suming the Percus-Yevick closure for the Ornstein-Zernike
equation, namely, the Percus-Yevick integral equafi®h
where The Fourier transform method is used for solving the integral
equation.
_B*+(1-B*n)x ParameterA* and B* are calculated from the solution
By = 1+(1-B* 7)) px for the Percus-Yevick integral equation fer=1.5, andA*
(20) is. plotted as a function of den_sity at vgrious temperatures in
y=—A*(8*,7)B*>0, Fig. 1. In the _scale of the denslty s is a monotonlcally,
and almost linearly, decreasing function of density with a
The parametey is positive becausa* <0 for > »,. This  Weak temperature dependence above the critical temperature,
form of equation of state makes it natural to define the fred?ut as the temperature becomes lower than the critical tem-

B. Free volume

C. Numerical results for A* and B*

volumeu; by the formula perature, the integral equation for the pair correlation func-
tion ceases to yield a solution in the density intervals
vi=v(1—B;7), (21) bounded within the coexisting densities. The paramater

thus becomes a disjointed, piecewise continuous function,
wherev =1/%. This is an exact statistical mechanical repre-which is not defined in the density range, (7,), where
sentation of free volume. The free volume is not easy tcand z, are the maximum and minimum value, respectively,
evaluate in general, and it remained elusive and unresolveah the isotherm at which the integral equation does not yield
for van der Waals himself according to Kldib2]. However, the solution. These values are, respectively, larger and
the present approach to the equation of state readily providesnaller than the coexisting vapor and liquid density of the
a natural statistical mechanical representation and a methasiotherm. In the van der Waals theory this paramaterand
of evaluating it as exactly as the evaluation of the cavityalsoB*, is a constant and the equation of state admits an
functions can be made by means of a suitable integral equamnstable portion in approximately the same intervalzas
tion for the cavity function or the pair correlation function. <7< #,. In the figure the solid and dotted curves are iso-
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a8 041 044 047 1
n p*
FIG. 2. Density dependence of free volume. The solid curve is

for T* =1.25; the dashed—dotted curve is 16¥=1.1; and the bro-
ken curve is forT*=0.9.

FIG. 3. Density dependence Bff. The meanings of the curves
are the same as in Fig. 1 fé¢*.

therms above the critical poinfTf ~1.2p*~0.23) which  will be reported elsewhergl6].
are continuous over the whole density range, whereas the In Fig. 3 parameteB* is plotted as a function of density
broken and dashed—dotted curves are subcritical isothern® various temperatures. The isotherms of this parameter
which are discontinuous. It is useful to remark that the nonabove the critical temperature are also continuous forall
existence of solutions of the integral equation for the paibut they are undefined and thus become discontinuous in the
correlation function in the subcritical regime is not unique tosame density intervals as for the corresponding isotherms for
the Percus-Yevick integral equation, since it happens to otheA*, as the temperature becomes less than the critical tem-
integral equations such as the hypernetted chain integrglerature. The meanings of the curves are the same as in Fig.
equation, although the precise locations in the density-1. Notice that parametds™ decreases almost linearly down
temperature plane where the solutions cease to exist depetlp* ~0.35 and then levels off to an almost constant value
on the closure taken for the Ornstein-Zernike equationon the order ofr3. This region invariably occurs in the liquid
Therefore, the singular behavior & and B* is robust, branch ofB* in the high density regime. This suggests that
although the domain of singular behavior, or the location ofin the high density liquid regime the van der Waals param-
the singularity, in the density—temperature plane can varyeterB may be taken with unity in the reduced units, namely,
depending on with which integral equation the cavity func-in the units ofo. This choice was suggested by Nordholm
tion is calculated. and Hayme{4] on an intuitive ground, and the present result
Another significant feature of the density dependence ofeems to support the idea.
A* presented is that it becomes negative as the density The critical density, marked by the symbel in Figs. 1
crosses a value,, which occurs in the liquid density regime and 3, occurs aroung* ~0.23. It is useful to observe that
and weakly depends on temperature. This means that in tH@th A* and B* appear to be approximately linear around
regime of the density beyong, it becomes meaningless to the critical density whermT =T, but in the case oT<T,
associate parameté&* with the attractive part of the inter- their behavior with respect to density and temperature is
action potential, as is in the case of the van der Waals theoryather similar, although they have opposite signs for the cur-
but it instead must be associated with the repulsive forcevature in the liquid regime. This density dependence appears
between the particles. This is because the attractive force i® be traceable to the difference in their cavity function de-
overpowered by the repulsive force as the particles ar@endence; see their definitions in terms of the cavity func-
packed to a sufficiently high density. Thus in the range oftions. The similarity in the subcritical behaviors Af and
density in question it makes sense to combine the paramet&* suggests that the valuesyfl) andy(y) share the same
A* with the parameteB* and recast the equation of state in characteristic feature that they become singular, as the den-
the form given in Eq(19), which motivates us to define the sity value reaches the spinodal curv@ ¥ T, . (Here we use
free volume as given in Eq21). The density dependence of the term spinodal curve for want of a suitable terminology,
the free volume is plotted in Fig. 2 at various temperaturesbut the curve appears to be related to the spinodal curve, but
In any case, the generic van der Waals equation of statdoes not coincide with it. The mathematical reason for such
provides a natural way of defining free volume, and the freesimilarity of the behaviors oA* andB* is that they are the
volume so defined can be used to calculate the self-diffusiomalues at two different positions of a function obeying the
coefficient of liquids and glassy materials by applying vari-same integral equation. This means that they are scaled by an
ous free volume theories for thef3—15. Such a study of identical function, which is singular with respect to density
density dependence of the self-diffusion coefficient of liquidsbut multiplied by different regular functions of density and
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temperature that produce the differences in their functional- 10 - - - - ' ' ' '
ities and magnitudes in different density regimes. Since the
functions A* and B* do not exist as real functions in the
interval 7, < << 7,, the singular part must be irrational, and

as a consequence the equation of state is no longer analytic
We therefore conjecture thahe generic van der Waals
equation of state is generally nonanalytic and, in particular,
irrational with regard to the density dependendée statis- é
tical mechanical support of this conjecture must be sought in
the solution of the integral equation for the cavity function

for the potential model considered. However, this problem is
not simple to resolve satisfactorily, because the solution can-  _g|
not be obtained in closed form for the integral equation. We
defer the study of this subject to future work.

D. Calculation of the chemical potential p*

As we have seen in the preceding subsection, to examine
i 9 * o o
s o g eSSy T" 12531 1 broken i B 05, he ymbos e e
. ' . simulation data by Vdler and Smith18].
coexistence curve must be constructed. We find it more con-
venient to use the chemical potential for the purpose. The
statistical mechanical formula for the chemical potential is This method is different from the commonly used particle

FIG. 4. Chemical potential vs density. The solid curve is for

given by the formuld8] insertion method based on Widom'’s thedty’']. The chemi-
. cal potentials, relative to I®¢), thus computed fory
Bu(p,B)=IN(A°p)+ Brrex, (22 =15 are plotted in Fig. 4 and compared with the simulation

results. The solid and broken curves are the results by the
present method and the symbols are the simulation results
[18].
1 % Both simulation results and the results by the present
,BMex=47T,3Pf dhf drr2u(r)g(r,\) (23)  method, although probably for different reasons, yield vapor
0 0 and liquid branches of an isotherm whose endpoints are not

with X denoting the charging parameter agd,)\) the pair cpnnected by a single horizontal tie line. To get around this
correlation function at charging parameter difficulty we exploit the fact that
To calculate the chemical potential we first observe that
since the charging parametermultiplies the potential en-
ergy strengt_hs, the temperature may be sca_led yvith it, thgt § wdn=0.
is, T—T/\ in the Boltzmann factor appearing in the pair
correlation function. Therefore the following variable change
may be made in the charging parameter integral for the
chemical potential: By using this condition it is possible to perform a Maxwell
construction for the coexisting values of the chemical poten-
1 * _ tials of vapor and liquid phases, and the liquid-vapor coex-
fo dh F()‘/T):TL drF(7%). istence curve can be constructed thereby. The result is pre-
sented in Fig. 5, where the solid curve is the liquid-vapor
The chemical potentials consequently can be calculated frorpoexistence curve computed by the method described and the
Egs.(22) and (23) by computing the pair correlation func- Symbols are the simulation values. The broken curve is the
tions at different temperatures ranging from the temperaturéocus of densities where the integral equation for the pair
in question to a sufficiently high value where the fluid be-correlation function fails to yield the solution. The compari-
haves ideally. This procedure is equivalent to changing théon with simulations on the liquid side is poor. But in the
charging parameter integral as indicated above. In the actuéifluid region the simulation values have also considerable
computation the excess chemical potential is split into thdateral errors(i.e., in density and also the Percus—Yevick
hard sphere and attractive potential contributions integral equation is not sufficiently accurate in the neighbor-
hood of the coexisting liquid densities. Nevertheless, it is
HS 1 £ possible to locate the critical point reasonably well by locat-
B'U“e":ﬁﬂex_‘h’g‘gpfo d)\Ldrrzg(r,)\) ing the maximum of the curve. In this way, we fifikf
~1.2 andp} ~0.23 for y=1.5. These values have served as
and the Percus—Yevick theory results for the hard spheres guide for the calculation oA* andB* in the subcritical
have been used fqu!?. regime in this work.

whereA =h/{mmkgT and the excess chemical potenjial,
is defined by the expression
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A.=A*(x=0t=0), B,=B*(x=0t=0).

1.25¢ 1 Then the generic van der Waals equation of state can be
written as

[14+ ¢+ AL+ X)?[1—v* B(1l+Xx)]= 7 (1+x)(1+t).
(29

In the case of the original van der Waals equation of state,
A* =A_ andB* =B, which are simply constants, and it can
be shown that

1 8
[*=3, v*=%, =%

The equation of staté24) can be rearranged to the form

0.3 p£.4 05 0.6 0.7 S[1—v* B(1+x)]=TI(x.1), (25)

_ 2 3
FIG. 5. Liquid-vapor coexistence curve and spinodal curve. Thell(X,t)=(Do+ 7t) + (D1 + 7 t)X+ DX+ DaX +R(X,t),
square () is the present theory results which are connected by the (26)

solid curve to guide the eyes. Other symbols are the simulatior\1Nh ]
values[18]. The broken curve is the spinodal curve. ere
— ok * % — ok * * * Kk
IV. REDUCED EQUATION OF STATE Do=7"~(1+{%)(1=v"), Dy=r" —20"+v*+3( 7
IN THE SUBCRITICAL REGIME

The virtue of the van der Waals equation of state is its D,={*(3v*—1), Ds={"v*,
ability to describe many aspects of liquid-vapor equilibrium. nd
The generic van der Waals equation of state has also a pron"ﬁ‘-

ising potential for such capability. Here we would like to R(X,1)=Rg(X,t) + Ry (X, )X+ Ro(X, 1) X2+ Ra(X,1)x3,
provide a glimpse of such a potential for the equation.

The numerical study of the generic van der Waals paramyjith the definitions
eters made in the preceding section strongly suggests that
they are nonanalytic functions of density T T.. There- Ro(x,t)=*v*[ A(X, 1) B(x,t) —1]— *[A(x,t)—1]
fore one may look for nonanalytic phenomenological forms .
for A* andB* and carry out study of the thermodynamics of +ur[Bx.H)—1],
subcritical fluids obeying the generic van der Waals equation ok % "
of state. To this end it is useful to organize the generic van Ri(X,1) =307 v* [AXD)B(X,t) = 1] =207 [A(x,t) = 1]
der Waals equation of state in a more suitable form, which is +o*[B(x,t)—1], (28)
reminiscent of the similar equation in the van der Waals
theory. By assuming nonanalytic forms for the parameters R,(x,t)=37*v*[ A(x,t)B(x,t)—1]— *[A(x,t)—1],
A* andB* we in fact have made a study of the subcritical

behavior on the basis of the form of the generic van der Ra(X,t)=*v*[A(X,t) B(x,t)—1].
Waals equation of state presented below. We hope to report
on the details of the study elsewhere. Therefore, apart from the term containiigon the left-hand
Let us introduce new reduced variables in reference to thside of Eq.(25), the R term represents the nonclassical cor-
critical state defined by parametes$, 7., andT? : rection to the van der Waals equation of state; every term in
R(x,t) is made up of the nonanalytic functionsand B.
p* 7 T* The critical point is defined by
¢p=—F-1, x=—-1, t=—-1
Pc e T 11(0,0 =0, (29
Also define the following quantities: oIl
11®0,0= (—) =0, (30)
Ac772 e X/,
= *C: v*=Bcry,, 7= *Ca
Pc Pc 9°TI
H(Z)(O,O)=(—2> =0, (3D
A=A*IA,, B=B*/B., X/

whereA, andB, are, respectivelyA* andB* evaluated at The derivativesI1(¥)(0,0) andI1(®(0,0) coincide with the
the critical point: density derivatives ofp, (d¢/dx)o, and @>¢lx?),, at the
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critical point. SinceR(0,0)=0 at the critical point, the con- for the case of thé=0 isotherm. These nonclassical behav-
ditions (29)—(31) mean the following: iors therefore impose certain conditions Ah andB* mak-
ing up the functionlI(x,t). Therefore, by investigating the
nonanalyticity ofA and B it is possible to study the subcriti-
2] 9% 32 cal behavior of the fluid. This line of study will be reported
0 elsewherd7].

2
Dy=0, D+

&R> =0, 2D,+
X 0_ : 2

If the equation of state is treated as a phenomenological ex-

pression these three conditions then impose constraints on V. CONCLUDING REMARKS

the functions4 and 5. We may further require thad and5

are such that the third and fourth density derivatives of The van der Waals equation of state expresses in a simple

II(x,t) also vanish at the critical point: functional form the role of repulsive and attractive intermo-
lecular forces in determining the fluid properties, although it
PR I*R has defects with regard to the critical behavior of the fluids.

11¥(0,0=6D5+ —3) =0, M¥(0,0= ( —4) =0. Despite the defects its great allure has been enduring because
X"y X of its weightier virtues, and it is this strength of allure that

(33 has induced so much research on and with this equation of
o o . - . tate for th ti f liquids, th t work i
These derivatives also coincide with the vanishing third an fatﬁ er?1r TE ; rgr%esrgftsxorfuﬁ%s\,vgcsr ig I;:Z?Egm\;v%riff;g:te
fourth d_e_n_sity derivativ_e_s ap at the critical point. Therefore from the past investigations’ in the van’ der Waals equation of
fche.c;jeﬂmp(r)]n r?f th? é:rltlﬁallgpom:jby hEQ$?é%) ;nd (3h3) €0" state in that we regard the original van der Waals equation of
incides with that of Baehf19] and otherg20,21), who im- state as a special case of the generic van der Waals equation,

posed the condition of vanishing first four density derivativeswhiCh is exact because it is obtained by recasting the exact

of ¢ atx=0 andt=0. o ) ; . ;
. . . and formal virial equation of state given in terms of the pair

f Ohn use Of. the ?Ondltlon%Z) at:\d$33) the right-hand side correlation function under the condition that there are two
of the equation of state takes the form distinctive branches, namely, repulsive and attractive, in the

_ 1 15(2)02 1:(3)u3 1 o(4)u4 intermolecular force between a pair of particles in the fluid.
M0 =[Ro(x,t) = REVX— 3 REX*— 5 REVX — 23 Rgx*) The aforementioned recasting oFf) the viFr)iaI equation of state
+ 7t [Ry(x, 1) — RPX— LRPx2— 1 REX3x provides us with exact statistical representations of the ge-
neric van der Waals parameteksaandB in the exact generic
+ 7 tx+ [ Ry(x,t) — RPx— 1RP)x?]x? van der Waals equation of state, and the original van der
(1)oro3 Waals equation of state is recovered by taking the low den-
+[Ra(x,t) = Ry“x]x%, (34 ity limit of the statistical expressions férandB.
These generic van der Waals parameters are then calcu-
where lated as functions of density and temperature in the case of a
square-well potential model by using the Percus—Yevick in-
(35) tegral equation for the pair correlation function. We could
have readily used the more realistic Lennard-Jones potential
model instead of the square-well model, but we have used

When expanded im away from the singular points od and  the latter for some mathematical transparency it provides for
B, the functionII(x,t) does not have first four expansion the role of the cavity functions and some future analytical
terms at the critical point and the estimff of remainder ~ Work planned. Therefore, on a superficial and cursory read-
of the expansion yields a nonclassical fractional exponent folnd, it could be easily questioned, since in the present work
x of the leading term becausé and 3 are nonanalytic with We are simply recasting some well-known numerical results
respect tax. A nonclassical exponent of the leading term inin another form, what is new after all? However, the recast-
the temperature expansion fox ¢ x,), wherex, andx, are  ing is precisely the point, since by recasting a well known
the coexisting liquid and vapor density, respectively, can bétatistical mechanical formula, not only are we putting a new

IR

ax]

R

0

shown[7] to arise also because of the nonanalyti@nd 3. light and thereby gaining a great deal of insight into the
In summary, the equation of state &t 0, namely, the original van der Waals equation of state itself as well as
critical isotherm, may be written as acquiring a canonical form of equation of state for liquids.
But also we are opening up a new way to structure the theory
d[1—v* B(1+x)]=11(x,0) (36) of liquids on and around the van der Waals equation of state,

which is known to contain a major portion of truth about the
with I1(x,t) given by Eq.(34). This equation of state is exact nature of liquids, and to investigate thermodynamic proper-
as it stands. If it is to account for the experimental data neaties of liquids from a fresh viewpoint. We find through the
x=0, thenlI(x,0) must be nonanalytic with respectx@nd  numerical study of the generic van der Waals parameters that
its leading term in fact should behave liké with the value the defects and weaknesses of the van der Waals equation of
of the exponent in the range 4.2—4.5 suggested by experstate are indeed removed because the paramAtarsd B
ment. For the? behavior the power series frof ¢ atx, and  become disjointed functions of density if the temperature is
X, can be used with same nonanalytic forms foand3 as lower than the critical temperature, and thereby become
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nonanalytic in density and temperature. We believe that thehould be overcome. Therefore there is a considerable
appropriate understanding of nonanalyticity Af and B amount of work to be done on the aspects just mentioned.
should enable us to comprehend the critical behavior of the The free volume in liquids is a difficult quantity to esti-
fluids obeying the generic van der Waals equation of statenate, although the concept appears in many ways in con-
This will be an additional motivation for studying the generic dénsed matter physics; examples are the cell and hole theo-
van der Waals equation of state presented. The merits of tHé€s[13] of liquids, free volume theor}15] of diffusion, and
generic van der Waals equation of state lie in identifying theS0 ON. It, in fact, was a quantity that remained elusive to van

essential objects of study and in the economic way of develde’ Waals himself, according to Kleji2]. The statistical

oping a nonanalytic equation of state by two avenues of agiePresentations of and B, especially in the high density
gime gives a quantitative method of evaluation of the elu-

proach, phenomenological and statistical mechanical, anf titv. Th b dt te the f |
one should take these two approaches in parallel and in gve quantity. They can be used to compute the free volume

synergetic manner. The forms férand B remain important from the molecular _viewpoint "FStead O.f using it as an ad-
objects of theoretical investigations, which we hope to purJustable parameter in the theories mentioned. The latest cal-

sue further in the future culation[16] made of the self-diffusion coefficients of lig-

To acquire more precise information @nhandB in the uids by applying the free volume concept based on the

statistical mechanics approach one needs first of all a bett neric van der Waals eqqatlon of state |nd_|cates the uility,
for even transport properties, of the equation of state pre-

closure for the Ornstein-Zernike equation than the Percu L
Yevick closure, which is adequate if the temperature is abov@ented in this work.
the critical point, but is generally subject to errors. The ther-
modynamically consistent closure recently propos$éd]
could be a good starting point in such investigations. Fur- The present work was supported in part by the Natural
thermore, numerical solutions of the Percus-Yevick integralSciences and Engineering Research Council of Canada and
equation are difficult to achieve in high precision as the temthe FCAR center grant through the Center for the Physics of
perature approaches the critical value. This difficulty alsoMaterials, McGill University.
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