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Generic van der Waals equation of state and statistical mechanical representations
of the van der Waals parameters
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In this paper, we show that in the case of the potential made up of a repulsive and an attractive part the virial
equation of state can be put into a form similar to the van der Waals equation of state and thus the form of the
van der Waals equation of state is generic to such a class of potentials. The derivation provides exact statistical
mechanical representations for the van der Waals parameters. The generic van der Waals parameters are
evaluated as functions of density and temperature by using the Percus-Yevick integral equation for the pair
correlation function in the case of a square-well potential. They become disjointed functions of density, which
are not defined in a density interval in the subcritical regime, if the temperature is less than the critical
temperature. On the basis of the numerical solution results for the parameters we conjecture that they are
irrational functions of density and thus nonanalytic.

DOI: 10.1103/PhysRevE.63.031203 PACS number~s!: 05.20.Jj, 05.70.Jk, 64.10.1h
n
se
s

g
n
e
e
ta
ve
is
s
de
tio
pl
t

er
om
rm

de
tl
p
a

nt
e
e

io
ls

ur

e
ion
ged
nd

sity
ical
he
ect
ua-
ta-
pa-
als
the
ner
er
of

es-
c in
tial

s-
any
pair
nd
nta-
way
als
not
by

ing

can
ical
ic

of

of
ard
ion
is

en
or
ss
I. INTRODUCTION

The van der Waals equation of state has been serving
only as a practical model for description of liquids and ga
but also as a prototype of, and a guide for, the equation
state subsequently proposed in the literature@1–3#, which
were attempts made to improve it from the phenomenolo
cal standpoints. Besides such older versions of equatio
state that appear in the literature, in some relatively rec
versions propositions@4,5# have been made to modify th
excluded volume term in the van der Waals equation of s
so as to make it perform better at high densities. Howe
such modifications are made intuitively without a firm stat
tical mechanical basis except that the resulting equation
state perform better than the original version of van
Waals in some respects. If the thermodynamic perturba
theories were pursued to all orders, one might in princi
obtain some relations of the van der Waals parameters to
perturbation series for the distribution function. Howev
the resulting relations should be expected to be rather c
plicated and physically nonintuitive. In the absence of fi
statistical mechanical foundations anad hocattempt at im-
provement of a very intuitive theory, such as the van
Waals theory, is bound to produce a result not sufficien
robust. One may therefore ask if there are reasonably sim
representations of the van der Waals parameters, which
rigorously based on statistical mechanics, and, concurre
if it is possible to remove the principal defect of the van d
Waals equation of state, that is, to remove the appearanc
the loop in the equation of state. Answering these quest
would in effect amount to modifying the van der Waa
equation of state to a form similar in mathematical struct
but without the defect of the former.
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In this work we would like to show that the form of th
van der Waals equation of state is generic to all interact
potential models that have a hard core and a finite ran
attractive potential, or, more generally, a repulsive core a
an attractive branch of interaction, provided that the den
does not approach that of close packing. It is a canon
form for fluids obeying such a potential model. Therefore t
form of the equation of state presented in this work in eff
amounts to a derivation of an exact van der Waals-type eq
tion of state. This viewpoint enables us to obtain exact s
tistical mechanical representations of the van der Waals
rameters or, more precisely, generic van der Wa
parameters, and thereby investigate the meanings of
original van der Waals parameters in a more precise man
and also to explore modifications of the original van d
Waals equation of state to forms more suitable for study
the thermodynamic properties of fluids. To make the inv
tigation as simple as possible and also to be more specifi
investigation, we assume a square-well interaction poten
and the Percus-Yevick closure@6# for the Ornstein-Zernike
~OZ! equation for the pair correlation function. The Percu
Yevick closure, however, is not mandatory because
other closure can be used. The integral equation for the
correlation function in the subcritical region of density a
temperature provides not only integral equation represe
tions for the van der Waals-type parameters, but also a
to obtain an equation of state free from the van der Wa
loop. The generic van der Waals parameters defined are
analytic in the subcritical regime and may be represented
irrational functions of density and temperature. By assum
suitable irrational~nonanalytic! functions for the generalized
van der Waals parameters in the subcritical regime, one
in fact show that the equation of state can yield nonclass
critical exponents for some relations of the thermodynam
variables near the critical point. We will report on this line
study elsewhere@7# in the near future.

In Sec. II we present the derivation of a generic form
the equation of state for a potential model that has a h
core and a finite ranged attractive potential. This derivat
is rather simple if the virial form of the equation of state

t

:
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used. It enables us to obtain the statistical mechanical re
sentations of the generic van der Waals parameters. T
these representations are specialized to the case of a sq
well potential. In Sec. III we numerically calculate the g
neric van der Waals parameters as functions of density
temperature by using the Ornstein-Zernike equation with
Percus-Yevick closure in the case of a square well mode
the potential energy. The generic van der Waals parame
are found to be continuous functions of density over
entire density range as they should be, if the temperatur
supercritical, but in the subcritical regime of temperatu
they are not defined in a domain of density and thus beco
disjointed, piecewise continuous functions of density. T
disjointedness reflects the fact that the liquid and va
phases are in equilibrium with each other, and the integ
equation for the pair distribution function consequently do
not have solutions in the range of density bounded b
temperature-density curve reminiscent of the liquid-va
coexistence curve. The discontinuity of the generic van
Waals parameters implies that they are nonanalytic funct
of density and temperature in the subcritical regime. In S
IV the generic van der Waals equation of state is organi
to a form which we believe is more suitable for studying t
thermodynamics of fluids in the subcritical regime so that
can avail ourselves to the basic methodology of the van
Waals theory for the subcritical behavior of fluids. The res
of this line of study, which is not presented in this wor
suggests that the generic van der Waals equation of state
be potentially useful for studying the thermodynamics
subcritical fluids and study of critical phenomena becom
tantamount to studying the nonanalyticity of the generic v
der Waals parameters. In Sec. V the concluding remarks
given.

II. EQUATIONS FOR PRESSURE

A. Generic van der Waals equation of state

For a pair potential energyu(r ) the virial equation of
state is given by@8,9#

bp

r
512

2p

3
brE

0

`

dr r 3u8~r !exp@2bu~r !#y~r ,r,b!,

~1!

where u8(r )5du(r )/dr,b51/kBT with kB denoting the
Boltzmann constant, andy(r ,r,b) is the cavity function.
The density and temperature dependence will be suppre
in the cavity function for brevity of notation, whenever co
venient. Let us assume that the potential energy has the

u~r !5` for r ,s

5ua~r ! for s,r ,j

50 for j,r . ~2!

Hereua(r ),0. Therefore the potential has a hard core an
finite ranged force of attraction. These conditions can
made less restrictive by removing the condition of fin
range of the attractive potential and making the poten
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simply repulsive forr ,s; these relaxed conditions woul
not invalidate the conclusion on the generic form for t
equation of state presented below. For the potential mo
presented earlier the virial equation of state takes the for

bp

r
511

2ps3

3
ry~s,r,b!

1
2p

3
r E

s

j

dr r 3y~r ,r,b!
d

dr
f ~r !, ~3!

where f (r ) is the Mayer function defined foru(r ) by

f ~r !5exp@2bu~r !#21. ~4!

Define the following functions of density and temper
ture:

A~r,b!52
2p

3b E
s

j

dr r 3y~r ,r,b!
d

dr
f ~r !, ~5!

B~r,b!5
2ps3

3

y~s,r,b!

11
2ps3

3
ry~s,r,b!

. ~6!

Then the virial equation of state in Eq.~3! can be written in
the form

~p1Ar2!~12Br!5rb21, ~7!

which has formally the same form as the van der Wa
equation of state. This will be referred to asthe generic van
der Waals equation of state, and the coefficientsA andB the
generic van der Waals parametersin this work. This simple
derivation, or rather a recasting of the virial equation of sta
implies that the van der Waals equation of state is a can
cal and generic form of equation of state for the class
potential models assumed, and Eqs.~5! and~6! are the exact
statistical mechanical representations for the generic van
Waals parametersA andB in the canonical form of equation
of state. As will be shown later, the generic form in Eq.~7!
reduces to the original van der Waals equation of state
special case holding in the limit ofr→0, wherey(s,r,b)
→1, or if the potential model is such that it yieldsA andB
which are independent of density and temperature. The la
case, however, would take a rather special kind of the po
tial energy function. We will examine Eq.~7! together with
Eqs. ~5! and ~6! in this paper. It must be noted that th
parameterB is closely related to the hard core, and the p
rameterA to the attractive branch of the potential.

B. Square-well potential model

We assume a square-well potential model for the inter
tion potential energy for the simplicity it provides withou
loss of the essential physical contents of the idea:
3-2
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GENERIC van der WAALS EQUATION OF STATE AND . . . PHYSICAL REVIEW E63 031203
u~r !5` for r ,s

52« for s,r ,j

50 for r .j. ~8!

Here « is the well depth of the potential. For this potenti
the Mayer function takes the form

f ~r !521 for r ,s

5exp~b«!21 for s,r ,j

50 for r .j.

The interaction range parameterj and the well depth« may
be fixed such that the second virial coefficients compu
with the van der Waals interaction (2r 26 potential) and the
square-well potential, respectively, match with each othe
thatj and« are not independent parameters. The virial eq
tion of state for the square-well potential is easily shown
be given by the expression

bp

r
511

2ps3

3
ry~s,r,b!2

2ps3

3
r@exp~b«!21#

3F S j

s D 3

y~j,r,b!2y~s,r,b!G . ~9!

This equation of state may be put into the form given in E
~7! for which the parametersA andB are now given by the
formulas

A~r,b!52
2p

3
s3b21@exp~b«!21#Fy~s,r,b!

2S j

s D 3

y~j,r,b!G , ~10!

B~r,b!5
2ps3

3

y~s,r,b!

11
2ps3

3
ry~s,r,b!

. ~11!

For the case of a square-well potential the form of param
B remains unchanged from the case of the potential mo
~2!.

III. DENSITY AND TEMPERATURE DEPENDENCE
OF A AND B

To study the density and temperature dependence of
generic van der Waals parameters it is convenient to
reduced variables defined as follows:

h5
p

6
r* , b* 5T* 215b«, p* 5pv0 /«, g5j/s

together with v05ps3/6 and r* 5s3r. The equation of
state for the square-well potential then may be put into
reduced form
03120
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~p* 1A* h2!~12B* h!5hb* 21, ~12!

where with the definitions

A* 5
A

«v0
, B* 5

B

v0
~13!

the reduced generic van der Waals parameters are give
the formulas

A* ~b* ,h!54b* 21~expb* 21!@g3y~g,b* ,h!

2y~1,b* ,h!#, ~14!

B* ~b* ,h!5
4y~1,b* ,h!

114hy~1,b* ,h!
. ~15!

With A and B reduced to these forms, the generic van d
Waals equation of state evidently does not explicitly depe
on material parameters such ass and «. Therefore it is a
corresponding-state equation of state, although not in
sense of that of the van der Waals theory, which yield
corresponding-state equation of state on scaling the equa
of state with the critical parameters (pc ,vc ,Tc) defined by it.

To prepare for the comparison to be made of the equa
of state presented in Eq.~12! with the original van der Waals
equation of state, we present the latter in terms of the
duced variables introduced:

~p* 1a* h2!~12b* h!5hb* 21. ~16!

Here the van der Waals parametersa8 andb8 are reduced as
follows:

a* 5
a8

«v0
, b* 5

b8

v0
. ~17!

It should be noted thata8 andb8 are constants independe
of temperature and density.

A. The cavity functions and the generic van der Waals
parameters

On close examination of the equation of state~12! for the
square-well potential, we see that the cavity functi
y(1,h,b* ) is intimately related to the hard core of the p
tential whereas the cavity functiony(g,h,b* ) must be more
closely related to the attractive part of the potential thany(1)
is, as can be verified by a perturbation theory. The limiti
behavior of the parametersA* andB* with regard to density
can be readily deduced by observing that the cavity functi
y(1,h,b* ) and y(g,h,b* ) tend to unity ash→0. In this
limit the reduced parameters therefore tend to constants

lim
h→0

A* ~b* ,h!54b* 21~expb* 21!~g321!'4~g321!,

lim
h→0

B* ~b* ,h!54. ~18!
3-3
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Note that the zero density limit ofA* generally depends on
temperature. With this set of constant parameters the gen
van der Waals equation of state becomes the original van
Waals equation of state, if we identify

a854«v0~g321!, b85v0

for the square-well potential model. These parameters
independent of density and temperature. From the viewp
of the present approach the van der Waals equation of s
therefore is the zero density limit for the cavity functions a
thus for B* and A* for which b* 21(expb*21).1. This
consideration suggests that the van der Waals equatio
state will not arise as an exact statistical mechanical res
unless special models are taken for the potential as in
case of the studies made by Kac and others@10,11#. In the
sense of the limits given in Eq.~18! the equation of state~12!
is a generalized form of the original van der Waals equat
of state, and it is justifiable to call it the generic van d
Waals equation of state because of the similarity of the fo
of Eqs. ~12! and ~16! and the generality of the former. Th
limiting behavior ofA* andB* in Eq. ~18! motivates us to
investigate their density and temperature dependence an
velop modified forms of the van der Waals equation of sta
For this purpose we must investigate the integral equation
the cavity function.

B. Free volume

The density dependence ofA* and B* discussed later
indicates that in the high density regimeA* becomes nega
tive beyond a density value,h t , say, andB* tends to a
constant independent of density. In the density regime oh
.h t it then is reasonable to write the equation of state in
form

p* ~12Bfh!5hb* 21, ~19!

where

Bf5
B* 1~12B* h!x

11~12B* h!hx
,

~20!
x52A* ~b* ,h!b* .0.

The parameterx is positive becauseA* ,0 for h.h t . This
form of equation of state makes it natural to define the f
volumev f by the formula

v f5v~12Bfh!, ~21!

wherev51/h. This is an exact statistical mechanical rep
sentation of free volume. The free volume is not easy
evaluate in general, and it remained elusive and unreso
for van der Waals himself according to Klein@12#. However,
the present approach to the equation of state readily prov
a natural statistical mechanical representation and a me
of evaluating it as exactly as the evaluation of the cav
functions can be made by means of a suitable integral e
tion for the cavity function or the pair correlation functio
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This statistical mechanical representation of free volu
makes the free volume concept precisely quantified and c
putable by means of the pair correlation function of the flu
instead of using models for it as is usually the case in
literature@13–15#.

C. Numerical results for A* and B*

The cavity functions appearing in the expressions for
parametersA* andB* are computed from the solutions fo
the integral equation for the total correlation function by a
suming the Percus-Yevick closure for the Ornstein-Zern
equation, namely, the Percus-Yevick integral equation@6#.
The Fourier transform method is used for solving the integ
equation.

ParametersA* and B* are calculated from the solutio
for the Percus-Yevick integral equation forg51.5, andA*
is plotted as a function of density at various temperature
Fig. 1. In the scale of the density axisA* is a monotonically,
and almost linearly, decreasing function of density with
weak temperature dependence above the critical tempera
but as the temperature becomes lower than the critical t
perature, the integral equation for the pair correlation fu
tion ceases to yield a solution in the density interv
bounded within the coexisting densities. The parameterA*
thus becomes a disjointed, piecewise continuous funct
which is not defined in the density range (h1 ,h2), whereh1
andh2 are the maximum and minimum value, respective
on the isotherm at which the integral equation does not y
the solution. These values are, respectively, larger
smaller than the coexisting vapor and liquid density of t
isotherm. In the van der Waals theory this parameterA* , and
also B* , is a constant and the equation of state admits
unstable portion in approximately the same interval ash1
,h,h2. In the figure the solid and dotted curves are is

FIG. 1. Density dependence ofA* . The dotted curve is forT*
51.25; the solid curve is forT* 51.218; the dashed–dotted curve
for T* 51.1; and the broken curve is forT* 51.0. The last two
curves are subcritical and undefined in an interval enclosing
critical point and thus disjointed. The symbol represents the crit
point.
3-4
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GENERIC van der WAALS EQUATION OF STATE AND . . . PHYSICAL REVIEW E63 031203
therms above the critical point (Tc* '1.2,rc* '0.23) which
are continuous over the whole density range, whereas
broken and dashed–dotted curves are subcritical isothe
which are discontinuous. It is useful to remark that the n
existence of solutions of the integral equation for the p
correlation function in the subcritical regime is not unique
the Percus-Yevick integral equation, since it happens to o
integral equations such as the hypernetted chain inte
equation, although the precise locations in the densi
temperature plane where the solutions cease to exist de
on the closure taken for the Ornstein-Zernike equati
Therefore, the singular behavior ofA* and B* is robust,
although the domain of singular behavior, or the location
the singularity, in the density–temperature plane can v
depending on with which integral equation the cavity fun
tion is calculated.

Another significant feature of the density dependence
A* presented is that it becomes negative as the den
crosses a valueh t , which occurs in the liquid density regim
and weakly depends on temperature. This means that in
regime of the density beyondh t it becomes meaningless t
associate parameterA* with the attractive part of the inter
action potential, as is in the case of the van der Waals the
but it instead must be associated with the repulsive fo
between the particles. This is because the attractive forc
overpowered by the repulsive force as the particles
packed to a sufficiently high density. Thus in the range
density in question it makes sense to combine the param
A* with the parameterB* and recast the equation of state
the form given in Eq.~19!, which motivates us to define th
free volume as given in Eq.~21!. The density dependence o
the free volume is plotted in Fig. 2 at various temperatur
In any case, the generic van der Waals equation of s
provides a natural way of defining free volume, and the f
volume so defined can be used to calculate the self-diffus
coefficient of liquids and glassy materials by applying va
ous free volume theories for them@13–15#. Such a study of
density dependence of the self-diffusion coefficient of liqu

FIG. 2. Density dependence of free volume. The solid curve
for T* 51.25; the dashed–dotted curve is forT* 51.1; and the bro-
ken curve is forT* 50.9.
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will be reported elsewhere@16#.
In Fig. 3 parameterB* is plotted as a function of densit

at various temperatures. The isotherms of this param
above the critical temperature are also continuous for alh,
but they are undefined and thus become discontinuous in
same density intervals as for the corresponding isotherms
A* , as the temperature becomes less than the critical t
perature. The meanings of the curves are the same as in
1. Notice that parameterB* decreases almost linearly dow
to r* '0.35 and then levels off to an almost constant va
on the order ofs3. This region invariably occurs in the liquid
branch ofB* in the high density regime. This suggests th
in the high density liquid regime the van der Waals para
eterB may be taken with unity in the reduced units, name
in the units ofs3. This choice was suggested by Nordhol
and Haymet@4# on an intuitive ground, and the present res
seems to support the idea.

The critical density, marked by the symbol^ in Figs. 1
and 3, occurs aroundr* '0.23. It is useful to observe tha
both A* and B* appear to be approximately linear aroun
the critical density whenT*Tc , but in the case ofT,Tc
their behavior with respect to density and temperature
rather similar, although they have opposite signs for the c
vature in the liquid regime. This density dependence appe
to be traceable to the difference in their cavity function d
pendence; see their definitions in terms of the cavity fu
tions. The similarity in the subcritical behaviors ofA* and
B* suggests that the values ofy(1) andy(g) share the same
characteristic feature that they become singular, as the
sity value reaches the spinodal curve ifT,Tc . ~Here we use
the term spinodal curve for want of a suitable terminolog
but the curve appears to be related to the spinodal curve
does not coincide with it.! The mathematical reason for suc
similarity of the behaviors ofA* andB* is that they are the
values at two different positions of a function obeying t
same integral equation. This means that they are scaled b
identical function, which is singular with respect to dens
but multiplied by different regular functions of density an

s FIG. 3. Density dependence ofB* . The meanings of the curve
are the same as in Fig. 1 forA* .
3-5
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BYUNG CHAN EU AND KYUNIL RAH PHYSICAL REVIEW E 63 031203
temperature that produce the differences in their function
ities and magnitudes in different density regimes. Since
functions A* and B* do not exist as real functions in th
intervalh1,h,h2, the singular part must be irrational, an
as a consequence the equation of state is no longer ana
We therefore conjecture thatthe generic van der Waal
equation of state is generally nonanalytic and, in particula
irrational with regard to the density dependence. The statis-
tical mechanical support of this conjecture must be sough
the solution of the integral equation for the cavity functi
for the potential model considered. However, this problem
not simple to resolve satisfactorily, because the solution c
not be obtained in closed form for the integral equation. W
defer the study of this subject to future work.

D. Calculation of the chemical potential

As we have seen in the preceding subsection, to exam
the functionsA* andB* near the critical state it is necessa
to locate the critical point. For this purpose the liquid-vap
coexistence curve must be constructed. We find it more c
venient to use the chemical potential for the purpose. T
statistical mechanical formula for the chemical potential
given by the formula@8#

bm~r,b!5 ln~L3r!1bmex , ~22!

whereL5h/ApmkBT and the excess chemical potentialmex
is defined by the expression

bmex54pbrE
0

1

dlE
0

`

dr r 2u~r !g~r ,l! ~23!

with l denoting the charging parameter andg(r ,l) the pair
correlation function at charging parameterl.

To calculate the chemical potential we first observe t
since the charging parameterl multiplies the potential en-
ergy strength«, the temperature may be scaled with it, th
is, T→T/l in the Boltzmann factor appearing in the pa
correlation function. Therefore the following variable chan
may be made in the charging parameter integral for
chemical potential:

E
0

1

dl F~l/T!5TE
T

`

dt F~t21!.

The chemical potentials consequently can be calculated f
Eqs. ~22! and ~23! by computing the pair correlation func
tions at different temperatures ranging from the tempera
in question to a sufficiently high value where the fluid b
haves ideally. This procedure is equivalent to changing
charging parameter integral as indicated above. In the ac
computation the excess chemical potential is split into
hard sphere and attractive potential contributions

bmex5bmex
HS24pb«rE

0

1

dlE
s

j

dr r 2g~r ,l!

and the Percus–Yevick theory results for the hard sph
have been used formex

HS.
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This method is different from the commonly used partic
insertion method based on Widom’s theory@17#. The chemi-
cal potentials, relative to ln(L3/s3), thus computed forg
51.5 are plotted in Fig. 4 and compared with the simulat
results. The solid and broken curves are the results by
present method and the symbols are the simulation res
@18#.

Both simulation results and the results by the pres
method, although probably for different reasons, yield va
and liquid branches of an isotherm whose endpoints are
connected by a single horizontal tie line. To get around t
difficulty we exploit the fact that

R m dh50.

By using this condition it is possible to perform a Maxwe
construction for the coexisting values of the chemical pot
tials of vapor and liquid phases, and the liquid-vapor co
istence curve can be constructed thereby. The result is
sented in Fig. 5, where the solid curve is the liquid-vap
coexistence curve computed by the method described and
symbols are the simulation values. The broken curve is
locus of densities where the integral equation for the p
correlation function fails to yield the solution. The compa
son with simulations on the liquid side is poor. But in th
liquid region the simulation values have also considera
lateral errors~i.e., in density! and also the Percus–Yevic
integral equation is not sufficiently accurate in the neighb
hood of the coexisting liquid densities. Nevertheless, it
possible to locate the critical point reasonably well by loc
ing the maximum of the curve. In this way, we findTc*
'1.2 andrc* '0.23 forg51.5. These values have served
a guide for the calculation ofA* and B* in the subcritical
regime in this work.

FIG. 4. Chemical potential vs density. The solid curve is f
T* 51.25 and the broken curve is forT* 50.9. The symbols are the
simulation data by Vo¨rtler and Smith@18#.
3-6
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IV. REDUCED EQUATION OF STATE
IN THE SUBCRITICAL REGIME

The virtue of the van der Waals equation of state is
ability to describe many aspects of liquid-vapor equilibriu
The generic van der Waals equation of state has also a p
ising potential for such capability. Here we would like
provide a glimpse of such a potential for the equation.

The numerical study of the generic van der Waals para
eters made in the preceding section strongly suggests
they are nonanalytic functions of density ifT,Tc . There-
fore one may look for nonanalytic phenomenological for
for A* andB* and carry out study of the thermodynamics
subcritical fluids obeying the generic van der Waals equa
of state. To this end it is useful to organize the generic v
der Waals equation of state in a more suitable form, whic
reminiscent of the similar equation in the van der Wa
theory. By assuming nonanalytic forms for the paramet
A* andB* we in fact have made a study of the subcritic
behavior on the basis of the form of the generic van
Waals equation of state presented below. We hope to re
on the details of the study elsewhere.

Let us introduce new reduced variables in reference to
critical state defined by parameterspc* , hc , andTc* :

f5
p*

pc*
21, x5

h

hc
21, t5

T*

Tc*
21.

Also define the following quantities:

z* 5
Achc

2

pc*
, v* 5Bchc , t* 5

hcTc*

pc*
,

A5A* /Ac , B5B* /Bc ,

whereAc andBc are, respectively,A* andB* evaluated at
the critical point:

FIG. 5. Liquid-vapor coexistence curve and spinodal curve. T
square (h) is the present theory results which are connected by
solid curve to guide the eyes. Other symbols are the simula
values@18#. The broken curve is the spinodal curve.
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Ac5A* ~x50,t50!, Bc5B* ~x50,t50!.

Then the generic van der Waals equation of state can
written as

@11f1z* A~11x!2#@12v* B~11x!#5t* ~11x!~11t !.
~24!

In the case of the original van der Waals equation of sta
A* 5Ac andB* 5Bc , which are simply constants, and it ca
be shown that

z* 53, v* 5 1
3 , t* 5 8

3 .

The equation of state~24! can be rearranged to the form

f@12v* B~11x!#[P~x,t !, ~25!

P~x,t !5~D01t* t !1~D11t* t !x1D2x21D3x31R~x,t !,
~26!

where

D05t* 2~11z* !~12v* !, D15t* 22z* 1v* 13z* v* ,
~27!

D25z* ~3v* 21!, D35z* v* ,

and

R~x,t !5R0~x,t !1R1~x,t !x1R2~x,t !x21R3~x,t !x3,

with the definitions

R0~x,t !5z* v* @A~x,t !B~x,t !21#2z* @A~x,t !21#

1v* @B~x,t !21#,

R1~x,t !53z* v* @A~x,t !B~x,t !21#22z* @A~x,t !21#

1v* @B~x,t !21#, ~28!

R2~x,t !53z* v* @A~x,t !B~x,t !21#2z* @A~x,t !21#,

R3~x,t !5z* v* @A~x,t !B~x,t !21#.

Therefore, apart from the term containingB on the left-hand
side of Eq.~25!, the R term represents the nonclassical co
rection to the van der Waals equation of state; every term
R(x,t) is made up of the nonanalytic functionsA andB.

The critical point is defined by

P~0,0!50, ~29!

P (1)~0,0!5S ]P

]x D
0

50, ~30!

P (2)~0,0!5S ]2P

]x2 D
0

50, ~31!

The derivativesP (1)(0,0) andP (2)(0,0) coincide with the
density derivatives off, (]f/]x)0, and (]2f/]x2)0, at the

e
e
n
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critical point. SinceR(0,0)50 at the critical point, the con
ditions ~29!–~31! mean the following:

D050, D11S ]R

]x D
0

50, 2D21S ]2R

]x2 D
0

50. ~32!

If the equation of state is treated as a phenomenological
pression these three conditions then impose constraint
the functionsA andB. We may further require thatA andB
are such that the third and fourth density derivatives
P(x,t) also vanish at the critical point:

P (3)~0,0!56D31S ]3R

]x3 D
0

50, P (4)~0,0!5S ]4R

]x4 D
0

50.

~33!

These derivatives also coincide with the vanishing third a
fourth density derivatives off at the critical point. Therefore
the definition of the critical point by Eqs.~32! and ~33! co-
incides with that of Baehr@19# and others@20,21#, who im-
posed the condition of vanishing first four density derivativ
of f at x50 andt50.

On use of the conditions~32! and~33! the right-hand side
of the equation of state takes the form

P~x,t !5@R0~x,t !2R0
(1)x2 1

2 R0
(2)x22 1

6 R0
(3)x32 1

24 R0
(4)x4#

1t* t1@R1~x,t !2R1
(1)x2 1

2 R1
(2)x22 1

6 R1
(3)x3#x

1t* tx1@R2~x,t !2R2
(1)x2 1

2 R2
(2)x2#x2

1@R3~x,t !2R3
(1)x#x3, ~34!

where

Ri
( j )5S ] jRi

]xj D
0

. ~35!

When expanded inx away from the singular points ofA and
B, the functionP(x,t) does not have first four expansio
terms at the critical point and the estimate@7# of remainder
of the expansion yields a nonclassical fractional exponent
x of the leading term becauseA andB are nonanalytic with
respect tox. A nonclassical exponent of the leading term
the temperature expansion for (xl2xv), wherexl andxv are
the coexisting liquid and vapor density, respectively, can
shown@7# to arise also because of the nonanalyticA andB.

In summary, the equation of state att50, namely, the
critical isotherm, may be written as

f@12v* B~11x!#5P~x,0! ~36!

with P(x,t) given by Eq.~34!. This equation of state is exac
as it stands. If it is to account for the experimental data n
x50, thenP(x,0) must be nonanalytic with respect tox and
its leading term in fact should behave likexd with the value
of the exponent in the range 4.2–4.5 suggested by exp
ment. For thetb behavior the power series int of f at xl and
xv can be used with same nonanalytic forms forA andB as
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for the case of thet50 isotherm. These nonclassical beha
iors therefore impose certain conditions onA* andB* mak-
ing up the functionP(x,t). Therefore, by investigating the
nonanalyticity ofA andB it is possible to study the subcriti
cal behavior of the fluid. This line of study will be reporte
elsewhere@7#.

V. CONCLUDING REMARKS

The van der Waals equation of state expresses in a sim
functional form the role of repulsive and attractive interm
lecular forces in determining the fluid properties, although
has defects with regard to the critical behavior of the flui
Despite the defects its great allure has been enduring bec
of its weightier virtues, and it is this strength of allure th
has induced so much research on and with this equatio
state for the properties of liquids, and the present work is
of them. The present work, however, is markedly differe
from the past investigations in the van der Waals equation
state in that we regard the original van der Waals equatio
state as a special case of the generic van der Waals equa
which is exact because it is obtained by recasting the e
and formal virial equation of state given in terms of the p
correlation function under the condition that there are t
distinctive branches, namely, repulsive and attractive, in
intermolecular force between a pair of particles in the flu
The aforementioned recasting of the virial equation of st
provides us with exact statistical representations of the
neric van der Waals parametersA andB in the exact generic
van der Waals equation of state, and the original van
Waals equation of state is recovered by taking the low d
sity limit of the statistical expressions forA andB.

These generic van der Waals parameters are then ca
lated as functions of density and temperature in the case
square-well potential model by using the Percus–Yevick
tegral equation for the pair correlation function. We cou
have readily used the more realistic Lennard-Jones pote
model instead of the square-well model, but we have u
the latter for some mathematical transparency it provides
the role of the cavity functions and some future analyti
work planned. Therefore, on a superficial and cursory re
ing, it could be easily questioned, since in the present w
we are simply recasting some well-known numerical resu
in another form, what is new after all? However, the reca
ing is precisely the point, since by recasting a well know
statistical mechanical formula, not only are we putting a n
light and thereby gaining a great deal of insight into t
original van der Waals equation of state itself as well
acquiring a canonical form of equation of state for liquid
But also we are opening up a new way to structure the the
of liquids on and around the van der Waals equation of st
which is known to contain a major portion of truth about t
nature of liquids, and to investigate thermodynamic prop
ties of liquids from a fresh viewpoint. We find through th
numerical study of the generic van der Waals parameters
the defects and weaknesses of the van der Waals equati
state are indeed removed because the parametersA and B
become disjointed functions of density if the temperature
lower than the critical temperature, and thereby beco
3-8
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GENERIC van der WAALS EQUATION OF STATE AND . . . PHYSICAL REVIEW E63 031203
nonanalytic in density and temperature. We believe that
appropriate understanding of nonanalyticity ofA and B
should enable us to comprehend the critical behavior of
fluids obeying the generic van der Waals equation of st
This will be an additional motivation for studying the gene
van der Waals equation of state presented. The merits o
generic van der Waals equation of state lie in identifying
essential objects of study and in the economic way of de
oping a nonanalytic equation of state by two avenues of
proach, phenomenological and statistical mechanical,
one should take these two approaches in parallel and
synergetic manner. The forms forA andB remain important
objects of theoretical investigations, which we hope to p
sue further in the future.

To acquire more precise information onA and B in the
statistical mechanics approach one needs first of all a b
closure for the Ornstein-Zernike equation than the Perc
Yevick closure, which is adequate if the temperature is ab
the critical point, but is generally subject to errors. The th
modynamically consistent closure recently proposed@22#
could be a good starting point in such investigations. F
thermore, numerical solutions of the Percus-Yevick integ
equation are difficult to achieve in high precision as the te
perature approaches the critical value. This difficulty a
7.

.
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should be overcome. Therefore there is a considera
amount of work to be done on the aspects just mentione

The free volume in liquids is a difficult quantity to est
mate, although the concept appears in many ways in c
densed matter physics; examples are the cell and hole t
ries @13# of liquids, free volume theory@15# of diffusion, and
so on. It, in fact, was a quantity that remained elusive to v
der Waals himself, according to Klein@12#. The statistical
representations ofA and B, especially in the high density
regime gives a quantitative method of evaluation of the e
sive quantity. They can be used to compute the free volu
from the molecular viewpoint instead of using it as an a
justable parameter in the theories mentioned. The latest
culation @16# made of the self-diffusion coefficients of liq
uids by applying the free volume concept based on
generic van der Waals equation of state indicates the uti
for even transport properties, of the equation of state p
sented in this work.
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